二叉树




 






































































































































































































































































































import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;

/**
 * BST
 */
public class BST<E extends Comparable<E>> {

  private class Node {
    public E e;
    public Node left, right;

    public Node(E e) {
      this.e = e;
      left = null;
      right = null;
    }
  }

  private Node root;
  private int size;

  public BST() {
    root = null;
    size = 0;
  }

  public boolean isEmpty() {
    return size == 0;
  }

  public int size() {
    return size;
  }

  // 向二分搜索树中添加新的元素e
  public void add(E e) {
    root = add(root, e);
  }

  private Node add(Node node, E e) {

    if (node == null) {
      size++;
      return new Node(e);
    }

    if (e.compareTo(node.e) < 0)
      node.left = add(node.left, e);
    else if (e.compareTo(node.e) > 0)
      node.right = add(node.right, e);

    return node;

  }

  public boolean contains(E e) {
    return contains(root, e);
  }

  private boolean contains(Node node, E e) {
    if (node == null)
      return false;

    if (e.compareTo(node.e) == 0)
      return true;
    else if (e.compareTo(node.e) < 0)
      return contains(node.left, e);
    else
      return contains(node.right, e);
  }

  public void preOrder() {
    preOrder(root);
  }

  public void preOrder(Node node) {
    if (node == null)
      return;

    System.out.println(node.e);
    preOrder(node.left);
    preOrder(node.right);
  }

  // 中序遍历以node为根的二分搜索树, 递归算法
  private void inOrder(Node node) {

    if (node == null)
      return;

    inOrder(node.left);
    System.out.println(node.e);
    inOrder(node.right);
  }

  // 二分搜索树的后序遍历
  public void postOrder() {
    postOrder(root);
  }

  // 后序遍历以node为根的二分搜索树, 递归算法
  private void postOrder(Node node) {

    if (node == null)
      return;

    postOrder(node.left);
    postOrder(node.right);
    System.out.println(node.e);
  }

  // 二分搜索树的非递归前序遍历
  public void preOrderNR(){

    if(root == null)
        return;

    Stack<Node> stack = new Stack<>();
    stack.push(root)
    while (!stack.isEmpty) {
      Node cur = stack.pop();
      System.out.println(cur.e);

      if(cur.right != null)
        stack.push(node.right);

      if(cur.left != null)
        stack.push(node.left);
    }
  }

  // 二分搜索树的层序遍历
  public void levelOrder() {
    if (root == null)
      return;

    Queue<Node> queue = new LinkedList<>();
    queue.add(root);
    while (!queue.isEmpty()) {
      Node cur = queue.remove();
      System.out.println(cur.e);

      if (cur.left != null)
        q.add(cur.left);
      if (cur.right != null)
        q.add(cur.right);
    }
  }

  // 寻找二分搜索树的最小元素
  public E minimum() {
    if (size == 0)
      throw new IllegalArgumentException("BST is empty!");

    return minimum(root).e;
  }

  // 返回以node为根的二分搜索树的最小值所在的节点
  private Node minimum(Node node) {
    if (node.left == null)
      return node;
    return minimum(node.left);
  }

  // 寻找二分搜索树的最大元素
  public E maximum() {
    if (size == 0)
      throw new IllegalArgumentException("BST is empty");

    return maximum(root).e;
  }

  // 返回以node为根的二分搜索树的最大值所在的节点
  private Node maximum(Node node) {
    if (node.right == null)
      return node;

    return maximum(node.right);
  }

  // 从二分搜索树中删除最小值所在节点, 返回最小值
  public E removeMin() {
    E ret = minimum();
    removeMin(root);
    return ret;
  }

  private Node removeMin(Node node) {
    if (node.left == null) {
      Node rightNode = node.right;
      node.right = null;
      size--;
      return rightNode;
    }

    node.left = removeMin(node.left);
    return node;
  }

  // 从二分搜索树中删除最大值所在节点
  public E removeMax() {
    E ret = maximum();
    root = removeMax(root);
    return ret;
  }

  // 删除掉以node为根的二分搜索树中的最大节点
  // 返回删除节点后新的二分搜索树的根
  private Node removeMax(Node node) {

    if (node.right == null) {
      Node leftNode = node.left;
      node.left = null;
      size--;
      return leftNode;
    }

    node.right = removeMax(node.right);
    return node;
  }

  // 从二分搜索树中删除元素为e的节点
  public void remove(E e) {
    root = remove(root, e);
  }

  // 删除掉以node为根的二分搜索树中值为e的节点, 递归算法
  // 返回删除节点后新的二分搜索树的根
  private Node remove(Node node, E e) {
    if (node == null)
      return null;

    if (e.compareTo(node.e) < 0) {
      node.left = remove(node.left, e);
      return node;
    } else if (e.compareTo(node.e) > 0) {
      node.right = remove(node.right, e);
      return node;
    } else {

      // 待删除节点左子树为空的情况
      if (node.left == null) {
        Node rightNode = node.right;
        node.right = null;
        size--;
        return rightNode;
      }

      // 待删除节点右子树为空的情况
      if (node.right == null) {
        Node leftNode = node.left;
        node.left = null;
        size--;
        return leftNode;
      }

      // 待删除节点左右子树均不为空的情况
      // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
      // 用这个节点顶替待删除节点的位置
      Node successor = minimum(node.right);
      successor.right = removeMin(node.right);
      successor.left = node.left;

      node.left = node.right = null;
      return successor;
    }
  }

  @Override
  public String toString() {
    StringBuilder res = new StringBuilder();
    generateBSTString(root, 0, res);
    return res.toString();
  }

  // 生成以node为根节点,深度为depth的描述二叉树的字符串
  private void generateBSTString(Node node, int depth, StringBuilder res) {

    if (node == null) {
      res.append(generateDepthString(depth) + "null\n");
      return;
    }

    res.append(generateDepthString(depth) + node.e + "\n");
    generateBSTString(node.left, depth + 1, res);
    generateBSTString(node.right, depth + 1, res);
  }

  private String generateDepthString(int depth) {
    StringBuilder res = new StringBuilder();
    for (int i = 0; i < depth; i++)
      res.append("--");
    return res.toString();
  }
}

203. 二叉树的最大深度

给定二叉树 [3,9,20,null,null,15,7]

返回它的最大深度 3




 











/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
  public int maxDepth(TreeNode root) {
    return root == null ? 0 : Math.max(maxDepth(root.left)+1, maxDepth(root.right) + 1);
  }
}
Last Updated: 7/18/2019, 11:20:27 PM