二叉树
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
/**
* BST
*/
public class BST<E extends Comparable<E>> {
private class Node {
public E e;
public Node left, right;
public Node(E e) {
this.e = e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BST() {
root = null;
size = 0;
}
public boolean isEmpty() {
return size == 0;
}
public int size() {
return size;
}
// 向二分搜索树中添加新的元素e
public void add(E e) {
root = add(root, e);
}
private Node add(Node node, E e) {
if (node == null) {
size++;
return new Node(e);
}
if (e.compareTo(node.e) < 0)
node.left = add(node.left, e);
else if (e.compareTo(node.e) > 0)
node.right = add(node.right, e);
return node;
}
public boolean contains(E e) {
return contains(root, e);
}
private boolean contains(Node node, E e) {
if (node == null)
return false;
if (e.compareTo(node.e) == 0)
return true;
else if (e.compareTo(node.e) < 0)
return contains(node.left, e);
else
return contains(node.right, e);
}
public void preOrder() {
preOrder(root);
}
public void preOrder(Node node) {
if (node == null)
return;
System.out.println(node.e);
preOrder(node.left);
preOrder(node.right);
}
// 中序遍历以node为根的二分搜索树, 递归算法
private void inOrder(Node node) {
if (node == null)
return;
inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}
// 二分搜索树的后序遍历
public void postOrder() {
postOrder(root);
}
// 后序遍历以node为根的二分搜索树, 递归算法
private void postOrder(Node node) {
if (node == null)
return;
postOrder(node.left);
postOrder(node.right);
System.out.println(node.e);
}
// 二分搜索树的非递归前序遍历
public void preOrderNR(){
if(root == null)
return;
Stack<Node> stack = new Stack<>();
stack.push(root)
while (!stack.isEmpty) {
Node cur = stack.pop();
System.out.println(cur.e);
if(cur.right != null)
stack.push(node.right);
if(cur.left != null)
stack.push(node.left);
}
}
// 二分搜索树的层序遍历
public void levelOrder() {
if (root == null)
return;
Queue<Node> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
Node cur = queue.remove();
System.out.println(cur.e);
if (cur.left != null)
q.add(cur.left);
if (cur.right != null)
q.add(cur.right);
}
}
// 寻找二分搜索树的最小元素
public E minimum() {
if (size == 0)
throw new IllegalArgumentException("BST is empty!");
return minimum(root).e;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node) {
if (node.left == null)
return node;
return minimum(node.left);
}
// 寻找二分搜索树的最大元素
public E maximum() {
if (size == 0)
throw new IllegalArgumentException("BST is empty");
return maximum(root).e;
}
// 返回以node为根的二分搜索树的最大值所在的节点
private Node maximum(Node node) {
if (node.right == null)
return node;
return maximum(node.right);
}
// 从二分搜索树中删除最小值所在节点, 返回最小值
public E removeMin() {
E ret = minimum();
removeMin(root);
return ret;
}
private Node removeMin(Node node) {
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
// 从二分搜索树中删除最大值所在节点
public E removeMax() {
E ret = maximum();
root = removeMax(root);
return ret;
}
// 删除掉以node为根的二分搜索树中的最大节点
// 返回删除节点后新的二分搜索树的根
private Node removeMax(Node node) {
if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
node.right = removeMax(node.right);
return node;
}
// 从二分搜索树中删除元素为e的节点
public void remove(E e) {
root = remove(root, e);
}
// 删除掉以node为根的二分搜索树中值为e的节点, 递归算法
// 返回删除节点后新的二分搜索树的根
private Node remove(Node node, E e) {
if (node == null)
return null;
if (e.compareTo(node.e) < 0) {
node.left = remove(node.left, e);
return node;
} else if (e.compareTo(node.e) > 0) {
node.right = remove(node.right, e);
return node;
} else {
// 待删除节点左子树为空的情况
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
return rightNode;
}
// 待删除节点右子树为空的情况
if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
return leftNode;
}
// 待删除节点左右子树均不为空的情况
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;
node.left = node.right = null;
return successor;
}
}
@Override
public String toString() {
StringBuilder res = new StringBuilder();
generateBSTString(root, 0, res);
return res.toString();
}
// 生成以node为根节点,深度为depth的描述二叉树的字符串
private void generateBSTString(Node node, int depth, StringBuilder res) {
if (node == null) {
res.append(generateDepthString(depth) + "null\n");
return;
}
res.append(generateDepthString(depth) + node.e + "\n");
generateBSTString(node.left, depth + 1, res);
generateBSTString(node.right, depth + 1, res);
}
private String generateDepthString(int depth) {
StringBuilder res = new StringBuilder();
for (int i = 0; i < depth; i++)
res.append("--");
return res.toString();
}
}
203. 二叉树的最大深度
给定二叉树 [3,9,20,null,null,15,7]
返回它的最大深度 3
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
return root == null ? 0 : Math.max(maxDepth(root.left)+1, maxDepth(root.right) + 1);
}
}